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a b s t r a c t

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities associated with an increased risk of
developing cardiovascular diseases or type II diabetes. Till now, the etiology of MetS is complex and still
unknown. Metabolic profiling is a powerful tool for exploring metabolic perturbations and potential
biomarkers, thus may shed light on the pathophysiological mechanism of diseases. In this study, fatty
acid profiling was employed to exploit the metabolic disturbances and discover potential biomarkers of
MetS. Fatty acid profiles of serum samples from metabolic syndrome patients and healthy controls were
first analyzed by gas chromatography–selected ion monitoring–mass spectrometry (GC–SIM–MS), a
robust method for quantitation of fatty acids. Then, the supervised multivariate statistical method of
random forests (RF) was used to establish a classification and prediction model for MetS, which could
assist the diagnosis of MetS. Furthermore, canonical correlation analysis (CCA) was employed to
investigate the relationships between free fatty acids (FFAs) and clinical parameters. As a result, several
FFAs, including C16:1n-9c, C20:1n-9c and C22:4n-6c, were identified as potential biomarkers of MetS.
The results also indicated that high density lipoprotein-cholesterol (HDL-C), triglycerides (TG) and
fasting blood glucose (FBG) were the most important parameters which were closely correlated with
FFAs disturbances of MetS, thus they should be paid more attention in clinical practice for monitoring
FFAs disturbances of MetS than waist circumference (WC) and systolic blood pressure/diastolic blood
pressure (SBP/DBP). The results have demonstrated that metabolic profiling by GC–SIM–MS combined
with RF and CCA may be a useful tool for discovering the perturbations of serum FFAs and possible
biomarkers for MetS.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Metabolic syndrome (MetS), which is a constellation of metabolic
abnormalities including abdominal obesity, hypertension, dyslipide-
mia and hyperglycemia has become one of the major public-health
challenges worldwide [1,2]. The prevalence of MetS was reported to
be approximately 34.6% in the United States [3], 17.8–34.0% in Europe
[4,5] and 12.8–41.1% in Asia [4]. Several studies showed that the
presence of MetS carries increased risk for cardiovascular disease
[6,7] and type 2 diabetes [8]. The people with this syndrome possess
nearly twice the risk for cardiovascular disease and 5-fold the risk for

type 2 diabetes. Furthermore, MetS is associated with other diseases,
including fatty liver [9] and cancer [10]. Thus, earlier identification
and treatment of individuals at risk is particularly crucial.

The current method used to diagnose MetS is based on the
clinical parameters in the definition, including waist circumference
(WC), high density lipoprotein-cholesterol (HDL-C), triglycerides
(TG), fasting blood glucose (FBG) and systolic blood pressure/
diastolic blood pressure (SBP/DBP). However, these clinical para-
meters are not independent but rather interdependent of each other,
rendering the disease rather difficult to diagnose and control.
Furthermore, they might provide little additional insight regarding
pathophysiologic mechanisms of MetS. Metabolomics or metabolite
profiling is an emerging technology which makes it more feasible to
acquire high-throughput profiles of a whole organism's metabolic
status [11,12]. The strategy of metabolomics has been successfully
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applied to many fields such as disease diagnosis [13], biomarker
discovery [14], drug efficacy and toxicity evaluation [15], and proved
to be a powerful tool for understanding the mechanism of diseases.

MetS is a complex disorder including multi-metabolic risk factors.
The mechanism underlying it is complex and still unknown. More
evidences demonstrated that MetS is closely associated with meta-
bolism disorder of lipid, especially those involving free fatty acids
(FFAs) [16,17]. FFAs, an important category of lipids, are active
molecules, which not only provide an important energy source as
nutrients, but also act as signaling molecules in various cellular
processes, including insulin secretion [18]. It was found that incr-
eased blood FFA levels played an important role in the development
of insulin resistance and various disturbances related to MetS [19,20].
In addition, FFAs could also contribute to oxidative stress, inflamma-
tion and endothelial dysfunction. So FFA profiling might be helpful to
elucidate the pathophysiological process of MetS. To fully use the
fatty acids in disease diagnosis, the entire analysis of fatty acids might
be important. Traditionally, due to high separation efficiency, sensi-
tive detection and good reproducibility, gas chromatography–mass
spectrometry (GC–MS) was used as a robust metabolic tool for
identification and quantification of fatty acids [21,22]. However, the
analysis of fatty acid methyl esters (FAMEs) using GC–MS remains a
challenge due to the coelution of many positional and geometrical
isomers of fatty acids [23,24]. In order to obtain accurate and
sensitive quantitation of all fatty acids, a method based on GC–
SIM–MS [25] was proposed. In selected ion monitoring (SIM) mode,
the most intense fragments (saturated: m/z 74, mono-unsaturated:
m/z 55, di-unsaturated: m/z 67, poly-unsaturated: m/z 79) were
selected as characteristic ions for quantification of fatty acids.

A cornerstone of metabolomics study is the acquisition and
processing of high-quality data. The multivariate data analysis tech-
niques and chemometrics are important to metabolomics for obtain-
ing reliable results. Recently, many multivariate statistical analysis
methods were employed to explore differences between groups of
samples and discover potential biomarkers. Among these chemo-
metric methods, random forests [26] (RF) is a new and powerful
statistical classifier for exploiting differences between groups of
samples, which not only possesses a high-prediction accuracy, but
also can calculate the proximity between samples and visualize the
data with multidimensional scaling (MDS). Meanwhile, canonical
correlation analysis [27] (CCA) is a popular feature extraction method
in multivariate statistical analysis, which provides an efficient way of
measuring the linear relationship between two multidimensional
variables. For this, CCA was utilized to discover the potential biomar-
kers associated with clinical parameters.

In the present study, metabolic profiling by GC–SIM–MS com-
bined with RF and CCA was developed to explore the perturbations
of serum FFAs and possible biomarkers of MetS. Serum samples
from healthy controls and MetS patients were first profiled by GC–
SIM–MS. In order to monitor the performance of the method and
ensure the reliability of data, quality control (QC) samples were
inserted throughout the run. After data preprocessing, RF was used
to map the distribution of all human serum samples and classify
healthy controls and MetS patients. Finally, CCA was employed to
explore the relationships between FFAs and clinical parameters, so
as to screen potential biomarkers that are related to clinical para-
meters and try to find some other useful information for dealing
with metabolic abnormalities of MetS.

2. Materials and methods

2.1. Chemicals and reagents

Supelco 37 component FAME mix (No. 47885-U) used for the
determination of fatty acids and cis-10-nonadecenoic acid (C19:1n-9c,

499% purity) used as internal standard were purchased from Sigma-
Aldrich (St. Louis, MO, USA). The solution 5% H2SO4/CH3OH was
freshly prepared by diluting H2SO4 (98.0% purity, Zhuzhou Chemical
Industry Institute, Zhuzhou, China) with chromatographic grade
methanol (Tedia Company, Inc., Fairfield, USA), and 0.4 mol/L KOH/
CH3OH was freshly prepared by dissolving analytical grade KOH in
methanol. Analytical grade n-hexane and anhydrous sodium sulfate
were commercially obtained from Tianjin Yongda Chemical Reagent
Co., Ltd. (China) and Tianjin Kermel Chemical Reagent Co., Ltd.
(China), respectively.

2.2. Study population and sample collection

In our study, since the samples were recruited from Chinese people
at the Xiangya Hospital of Central South University in Hunan Province,
China, presence of MetS was examined according to the guidelines on
prevention and treatment of dyslipidemia in Chinese adults [28]
(2007). The definition for MetS in the guidelines was made on the
basis of the Chinese Diabetes Society (CDS) definition [29] (2004) and
the International Diabetes Federation (IDF) definition [30] (2005). It is
the newest one in China. In the definition, subjects who satisfied at
least three of the following risk factors were identified as MetS
patients: central obesity (waist circumference490 cm in men,
485 cm in women), increased blood pressure (SBP/DBPZ130/
85 mmHg or previously diagnosed hypertension), increased fasting
blood glucose (FBGZ6.l mmol/L or previously diagnosed type 2 dia-
betes), increased serum triglycerides (TGZ1.70 mmol/L) and
decreased HDL-cholesterol (HDL-Col.04 mmol/L). Then 100 indivi-
duals collected from February 2012 to March 2013 were divided into
two groups: one group containing 42 cases that had 0 risk factor was
defined as healthy controls (HC), and the other group containing 58
cases that had at least three risk factors was defined as MetS patients.
All clinical experiments were approved by Xiangya Institutional
Human Subjects Committee and written informed consent was
obtained from each participant.

2.3. Sample preparation

Serum samples were collected in the morning before breakfast
and stored at �80 1C until analysis. Sample preparation procedures
have been described previously in Ref. [31]. However, what we
considered was only the FFAs fraction in serum, and the esterified
fatty acids (EFAs) fraction in serum was left out of consideration.
Moreover, internal standard (I.S.) for FFAs was replaced with C19:1n-
9c since in our experiments C17:0 is detectable. In our experiments,
aliquots (50 mL) of serum were spiked with internal standard (10 mL,
0.1 mg/mL C19:1n-9c/n-hexane) and 0.5 mL of 0.4 mol/L KOH/CH3OH
was added, vortexed for 30 s and placed at room temperature for
10 min. Then, 0.5 mL of n-hexane was added twice and vortexed for
30 s each time. Once the n-hexane phase containing the EFA methyl
esters was removed, the residual serum phase was put into contact
with anhydrous sodium sulfate to remove traces of water. After-
wards, 0.5 mL of 5% H2SO4/CH3OH was added to the residuary phase
of serum and the mixture was kept in a water bath at 70 1C for
30 min. Then, 1 mL of n-hexane was added twice and vortexed for
30 s each time. Prior to analysis by GC–MS, the n-hexane phases
containing the methyl esters of FFAs were evaporated to dryness and
subsequently reconstituted with 100 mL of n-hexane.

Quality control (QC) samples [32,33], which were employed to
monitor the performance of the method and increase the credibility
of downstream data analysis, were prepared by pooling 10 mL
aliquots from each serum sample and vortex mixing (1 min). Sample
preparation for QC samples was performed as described above.
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2.4. GC–MS analysis

GC–MS analyses were performed on an Agilent 7890A gas
chromatograph coupled to an Agilent 5975C quadrupole mass
spectrometer. In the gas chromatographic system, a DB-23 capillary
column (30 m�0.25 mm i.d., film thickness 0.25 mm) was used. The
optimized temperature programwas as follows: initial temperature
100 1C, ramped to 160 1C at the rate of 20 1C/min, and followed by a
second gradient of 6 1C/min to 180 1C, held at 180 1C for 3 min,
finally, increased at 20 1C/min to 230 1C, held at this temperature for
5 min. The total program time was 16.833 min and the solvent
delay time was 3.50 min. Helium (99.999% purity) was used as
carrier gas with a flow rate of 1.0 mL/min. The temperature of the
injector was 250 1C, and a sample of 2 mL was injected at the split
ratio of 1:5. The mass spectrometric conditions were as follows: the
temperatures of MS transfer line, quadrupole and ion source were
set at 250 1C, 150 1C and 230 1C, respectively; electron impact (EI)
energy was operated at 70 eV; the SIMmodewasm/z 55, 67, 74, and
79; the full-scan mode was from m/z 35 to 450.

The injection order in every batch containing 12 study samples
was as follows. In order to equilibrate the analytical system, 3 or
5 injections of QC samples were applied at the beginning of the
batch. When the analytical system was balanced, one injection of
QC sample was acquired in full scan mode. Then every fourth
injection was a pooled QC sample and the final two injections of
every batch were also QC samples. Except for the injection of
QC-Scan, all the other injections were acquired in SIM mode.

2.5. Identification of serum free fatty acids of MetS patients and
healthy controls

Since QC samples were pooled samples from MetS patients and
healthy controls, they had the same composition as MetS patients
and healthy controls. So QC-Scan could be used for qualitative
analysis of fatty acids. The identification of FAMEs was conducted
by the combination of retention time and mass spectral character-
istics. The 37 component FAMEs mixture did not include all FAMEs
esterified from serum free fatty acids. So, a method [34] proposed
by our laboratory was adopted. In this method, the mass spectral
characteristics of FAMEs were employed to automatically recog-
nize all expected straight saturated FAMEs, whose retention times
were subsequently used to calculate the equivalent chain length
(ECL) values for the unsaturated FAMEs in samples. Finally, the ECL
values and characteristic ions were applied to the identification of
unsaturated FAMEs by comparing with those in the library.

2.6. Data processing and multivariate statistical analyses

The resulting raw data files (.D format) were converted to the
NetCDF format and imported into the original software “Tradi-
tional Chinese Medicine Fingerprint Database System (TCMSys
V1.0.2)”, written by our group. Data preprocessing was performed
here, including smoothing, baseline correction, peak shift align-
ment, normalization and peak area integration. As for normal-
ization in this paper, the peak areas of corresponding metabolites
were normalized to that of the internal standard on the same
chromatogram to obtain the relative intensities of metabolites.
Quality assurance (QA) was subsequently performed and only
metabolic features with a relative standard deviation (RSD) for
measured peak areas ofo20% were retained for data analysis [35].
All other metabolic features were removed from the dataset and
ignored in subsequent data analysis. Then, the data matrix
composed of 42 healthy controls, 58 MetS patients and 49 QC
samples was imported into our custom scripts in MATLAB 7.10
(The MathWorks, Inc., USA) for subsequent multivariate statistical
analyses.

2.6.1. Principal component analysis
The autoscaled data of FFAs were first analyzed by the unsu-

pervised PCA to visualize the general trends of all the samples,
including 42 healthy controls, 58 MetS patients and 49 QC
samples. PCA combines the original variables linearly to produce
a few new variables (called principal components, PCs) containing
most of the information. The score plot of PC1, PC2 and PC3 was
applied to show separation or clusters among the three groups.

2.6.2. Random forests
In this study, random forests, as a new and powerful statistical

classifier, were introduced to explore the disturbances of free fatty
acid profiles, so as to establish a classification and prediction model
for MetS. RF is an ensemble classification algorithm. As the name
suggests, RF combines many classification trees to produce more
accurate classifications. The prediction accuracy for RF is estimated
internally using an out-of-bag (OOB) estimation. Thus there is no
need for cross-validation. Apart from the OOB estimation, RF also
provides a proximity measure. The proximity between two samples
is calculated as the number of times that the two samples end up in
the same terminal node of a tree, divided by the number of trees in
the forest. The resulting proximity matrix can be used to construct
MDS plots, whose aim is to visualize the similarity or dissimilarity
(calculated as 1- proximity) between samples.

More detailed theory on RF can be seen in Breiman's paper
[26]. The RF algorithm for classification can be briefly described as
follows:

1) Draw ntree bootstrap samples from the original dataset. (ntree is
the number of trees in the forest. In this study, ntree¼600).

2) For each of the bootstrap samples, grow an un-pruned classification
tree, and modify with the following procedure: at each node,
randomly select mtry variables and choose the best split from
among those variables. (For classification, the default value of mtry

is equal to sqrt (mall), wheremall is the total number of the variables
in the original dataset. In this study, mall¼28, thus, mtry¼5).

3) Predict new data by aggregating the predictions of the
ntree trees.

2.6.3. Canonical correlation analysis
Canonical correlation analysis [27,36] (CCA), which is a classic

method of correlating linear relationships between two sets of
multidimensional variables, was employed to explore the relation-
ships between free fatty acids and clinical parameters, so as to
discover biomarkers that are associated with clinical parameters
and try to find some other useful information for dealing with
metabolic abnormalities of metabolic syndrome. Considering x
and y as the matrices of free fatty acids and clinical parameters,
the corresponding rows and columns of x and y represent
observations and variables, respectively. These two matrices were
first preprocessed by centering, which can make the mean to
be zero.

The total covariance matrix

C¼
Cxx Cxy

Cyx Cyy

" #
¼ E

x
y

 !
x
y

 !T
2
4

3
5 ð1Þ

is a block matrix where Cxx and Cyy are the within-sets covariance
matrices of x and y, respectively and Cxy ¼ CT

yx is the between-sets
covariance matrix. The canonical correlations between x and y can
be found by solving the eigenvalue equations

C�1
xx CxyC�1

yy Cyxâx ¼ ρ2âx

C�1
yy CyxC�1

xx Cxyb̂y ¼ ρ2b̂y

8<
: ð2Þ
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where the eigenvalues ρ2 are the squared canonical correlations and
the eigenvectors âx and b̂y are the normalized canonical correlation
basis vectors. The number of non-zero solutions to these equations
are limited to the smallest dimensionality of x and y. The so-called
canonical variables U and V can be represented as U¼Xa and V¼Yb.

3. Results and discussion

3.1. Clinical parameters of MetS patients and healthy controls

The clinical parameters of MetS patients and healthy controls were
measured by Xiangya Hospital according to routine physical examina-
tion methods [37]. These clinical parameters are shown in Table 1 and
data was presented as mean7SD. The significance of these clinical
parameters was analyzed using T-test and adjusted by Bonferroni–
Holm correction for multiple comparisons with the significance level
set at Po0.05. The results reflected that several parameters such as
WC, SBP/DBP, TG and FBG were significantly higher in MetS patients
than that in healthy controls, in contrast, the level of HDL-C was
significantly lower in MetS patients (Po0.05). Although these para-
meters may reflect the metabolic state of MetS to some extent, there
are various other underlying metabolic disturbances, especially lipid
metabolic disorders related to MetS. In order to elucidate the
perturbations of serum fatty acids and potential biomarkers, further-
more, shed light on the pathophysiological progress of MetS, metabolic
profiling was therefore performed in this study.

3.2. GC–SIM–MS profiles of serum samples from MetS patients and
health controls

In order to obtain accurate quantitation of more fatty acids,
GC–SIM–MS was employed to profile serum samples from MetS

patients, healthy controls and QC samples. The GC–SIM–MS com-
parison profiles of serum free fatty acids from MetS patients and
health controls (Fig. 1) and the qualitative and quantitative results
of free fatty acids (Table 2) are obtained at the optimized conditions.
As labeled in the solid profile, there are 28 common peaks in the TIC
chromatograms of all the samples, and among the 28 peaks, 22 fatty
acids were unambiguously identified and validated by the reference
standards. The other fatty acids were identified based on retention
times/indices and mass spectral characteristics according to the
method proposed by our laboratory. Components in the solid profile
could also be found in the dotted one according to their retention
times and mass spectra. The comparison of fatty acid profiles of
MetS patients (Fig. 1 in solid line) and health controls (Fig. 1 in
dotted line) illustrated that serum FFAs of different groups of people
were the same, while the concentrations were different. The
concentrations of serum FFAs in MetS patients were higher than
the concentrations of serum FFAs in health controls (Fig. 1 and
Table 2). Moreover, most of FFAs' concentrations differed signifi-
cantly (Po0.05) between health controls and MetS patients
(Table 2). These results reflect the increasing trends of fatty acids
from health controls to MetS patients. However, whether these fatty
acids could completely separate MetS patients from healthy con-
trols and which fatty acids are the most relevant to the clinical
parameters are still unknown. Thus, it is necessary to further
investigate the fatty acid profiles with the help of multivariate
statistical analyses.

3.3. Results of PCA and random forests

First of all, the autoscaled free fatty acid data matrix (149
samples�28 variables) is analyzed using PCA to explore separa-
tion or clusters of all the samples, including 42 healthy controls, 58
MetS patients and 49 QC samples. The score plot for the first three
components, say PC1, PC2 and PC3, is displayed in Fig. 2. As shown
in the figure, there was a trend of intergroup separation from HC,
QC to MetS in the PC2 direction. However, it was still hard to
completely classify the samples of these three groups, though the
first three PCs have explained up to 78.25% of the total variance of
the data. The results showed that the unsupervised method of PCA
could not separate the three groups satisfactorily.

Therefore, the powerful supervised multivariate statistical method
of RF was subsequently employed to explore the disturbances of free
fatty acids of MetS, so as to establish a classification and prediction
model for MetS. The RF model consists of a series of classification
trees which are constructed by the bootstrap samples. After each tree

Table 1
Clinical parameters of MetS patients and healthy controls.

Clinical parameters HC (n¼42) MetS (n¼58) P values

WC (cm) 76.7676.87 91.1974.93 1.1315e-20
SBP (mmHg) 111.3379.90 133.00714.25 9.9910e-13
DBP (mmHg) 70.9576.89 85.03711.00 2.1114e-10
TG (mmol/L) 0.8970.41 3.6072.03 9.9910e-13
HDL-C (mmol/L) 1.3970.28 1.0670.23 4.1058e-09
FBG (mmol/L) 4.8970.42 6.9172.57 2.1097e-06

A P value ofo0.05 was considered statistically significant.

Fig. 1. Comparition of GC–SIM–MS profiles of free fatty acid methyl esters from serum samples of MetS patient (in solid line) and healthy control (in dotted line). The
qualitative results were marked in the solid profile.
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is built, all of the data are run down the tree, and proximities are
calculated for each pair of cases. To more directly and conveniently
observe the patterns in the proximity matrix, MDS is employed to
map the proximity into a lower-dimensional space. The MDS plot of
serum free fatty acid profiles from HC, MetS and QC groups is shown
in Fig. 3. As illustrated in the figure, the samples from QC group lied
between HC group and MetS group and clustered tightly in the MDS
plot, confirming the reliability of the data for subsequent data
analysis. Moreover, a better and clear separation was observed for
HC and MetS samples. The prediction ability for RF model internally
using an out-of-bag estimation was as follows: sensitivity (0.8611),
specificity (0.8644) and accuracy (0.8632). These results indicated
that RF algorithm could effectively reflect the distinction of free fatty
acids profiles between healthy controls and MetS patients. Thus, the
classification and prediction model for MetS by RF could assist the
diagnosis of MetS.

3.4. Canonical correlation analysis of FFAs and clinical parameters

In clinical practice, five indicators, including WC, SBP/DBP, TG,
HDL-C and FBG, are measured to diagnose MetS. MetS, as a
constellation of metabolic abnormalities, especially lipid metabolic
disorder, is closely associated with FFAs. However, the association
between FFAs and the five components of MetS and which
component should be paid more attention are still unknown. So
CCA was conducted to explore the relationships between FFAs and
clinical parameters, so as to discover biomarkers that are associated

with clinical parameters and try to find some other useful informa-
tion for dealing with metabolic abnormalities of metabolic syn-
drome. Fig. 4 shows the scatter plot of the first couple of canonical
variables for free fatty acids (U1) and clinical parameters (V1). As
displayed in the figure, free fatty acids (U1) and clinical parameters
(V1) had good correlation with canonical correlation coefficient of
0.9015, and it was validated by Bartlett's approximate chi-squared
statistic for null hypothesis with the P value of right-tail significance
level as 1.238e-13. The results indicated that free fatty acids were
closely correlated with the clinical parameters.

Since FFAs can represent the underlying lipid metabolic dis-
turbances of MetS, and were closely correlated with the clinical
parameters, we intended to exploit the important clinical para-
meters for the correlation, so as to be considered for monitoring
lipid metabolic disturbances of MetS in clinical practice. For this
purpose, the coefficients of the first couple of canonical variables for
the clinical parameters may be employed for representing the
importance of the parameters. The plot of absolute values of each
variable in the first couple of canonical variables for clinical
parameters is shown in Fig. 5. As displayed in the figure, the
absolute values of HDL-C, TG, and FBG, especially HDL-C, were
significantly higher than those of WC and SBP/DBP. It indicates that
these parameters may be more correlated with FFAs, and more
attention should be paid to these parameters in clinical practice.
Namely, dyslipidemia (characterized by elevation of TG and dec-
rease of HDL-C) and hyperglycemia, especially dyslipidemia, may
be more correlated with FFAs than obesity and hypertension. So,
more attentions should be paid to the disorder of lipid meta-
bolism and glucose metabolism for MetS.

As for FFAs, the absolute values of each variable in the first couple
of canonical variables for FFAs may represent the importance of FFAs
which are closely associated with the clinical parameters. Thus, these
metabolites may be considered as the potential biomarkers of MetS.
Fig. 6 shows the absolute values of the coefficients of the first couple
of canonical variables for FFAs. As displayed in the figure, the abso-
lute values of the coefficients for C16:1n-9c, C20:1n-9c, C22:0 and
C22:4n-6c were obviously higher than those for other FFAs. However,
as presented in Table 2, C22:0 found no significant difference between
MetS patients and healthy controls by Bonferroni–Holm correction
(Po0.05). Therefore, only C16:1n-9c, C20:1n-9c and C22:4n-6c could
be considered as the potential biomarkers of MetS.

Metabolic interpretation of the results is of great importance,
although the interpretation of metabolomic research is difficult for
the complexity of metabolic pathways. Palmitoleic acid (C16:1n-9c),
one of the important monounsaturated fatty acids (MUFAs), can arise
from the β- oxidation of oleic acid (C18:1n-9c) [38]. It has been
reported that the concentration of C16:1n-9c was highly associated

Table 2
Qualitative and quantitative analysis results of free fatty acids profiling of healthy
controls and MetS patients.

Rt.
Time
(min)

FFAs HC (n¼42)
(lg/mL)

MetS (n¼58)
(lg/mL)

RSD
of QC

Bonferroni–
Holm
correction

Pn h

3.971 C12:0 0.4070.23 1.0270.57 9.51% 8.9558e-07 1
5.217 C14:0 2.5970.94 5.9474.13 8.52% 2.7682e-05 1
5.966 C15:0 0.6770.14 0.9670.52 8.91% 0.0040 1
6.832 C16:0 89.14718.86 142.96757.47 5.45% 1.7110e-06 1
7.023 C16:1n-9c 1.3570.40 2.3170.73 9.44% 3.6508e-10 1
7.103 C16:1n-7c 2.8871.33 5.4973.03 6.36% 2.2527e-05 1
7.862 C17:0 1.46 70.30 1.8970.58 6.20% 3.8969e-04 1
8.184 C17:1n-7c 0.2070.07 0.4070.30 11.49% 8.6202e-04 1
9.242 C18:0 37.3976.78 49.78716.99 5.09% 3.1527e-04 1
9.601 C18:1n-9c 56.12 717.59 95.00739.14 5.14% 8.9558e-07 1
9.682 C18:1n-7c 4.3071.31 7.7373.56 5.33% 1.0329e-06 1

10.186 C18:2n-6c 72.34714.68 102.76745.08 5.54% 7.3969e-04 1
10.452 C18:3n-6c 0.4570.23 0.8170.46 7.29% 1.3319e-04 1
10.571 C18:3n-3 0.4070.19 0.6970.45 6.24% 0.0020 1
10.764 C18:3n-3c 4.12 71.87 7.3974.97 6.63% 0.0011 1
11.315 C20:0 0.4770.15 0.7170.51 9.18% 0.0322 1
11.487 C20:1n-9c 0.7470.35 1.2470.61 5.78% 1.3243e-04 1
11.822 C20:2n-6c 1.3370.31 1.8870.63 4.37% 2.4112e-05 1
12.003 C20:3n-6c 2.8371.00 4.2771.77 6.79% 1.3905e-04 1
12.117 C20:4n-6c 15.0872.89 17.5575.43 6.40% 0.0462 1
12.533 C20:5n-3c 1.0770.72 1.4971.14 5.93% 0.0948 0
12.622 C22:0 0.5470.15 0.6770.37 7.76% 0.0948 0
12.801 C22:1n-9c 0.6670.20 0.8570.42 7.35% 0.0462 1
13.588 C22:4n-6c 0.4970.11 0.7470.32 5.79% 1.3905e-04 1
13.702 C22:5n-6c 0.6770.23 0.9670.45 5.94% 0.0027 1
14.119 C22:5n-3c 1.8070.41 2.3870.73 4.45% 1.5782e-04 1
14.257 C22:6n-3c 6.2372.19 7.2672.62 7.83% 0.0740 0
14.345 C24:1n-9c 0.4970.16 0.5670.16 7.53% 0.0688 0

Total FFA 305.33761.50 464.117177.04 5.4221e-06 1

Concentration values are presented as mean7SD.
n The statistical significance of FFAs between healthy controls and MetS

patients was tested using T-test and adjusted by Bonferroni–Holm correction for
multiple comparisons. A P value ofo0.05 was considered statistically significant
and signed ‘1’, or else signed ‘0’.

Fig. 2. PCA score plot (PC1, PC2 and PC3) of serum free fatty acid profiles from HC,
MetS and QC groups.
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with MetS in the study for obese prepubertal children [39]. Further-
more, in a large case-control study for predicting the metabolic
syndrome status, palmitoleic acid was used as the most discrimina-
tive variable to discriminate between cases and controls since its
concentration was significantly higher for MetS patients compared
to controls [40]. Nervonic acid (C24:1n-9c) was reported to have
preventive effects on diabetes- and obesity-related metabolic dis-
orders [41]. 11-eicosenoic acid (C20:1n-9c), as an intermediate in
the stepwise conversion of oleic acid (C18:1n-9c) to nervonic acid,
was found to be significantly higher in diabetic rats than in control
animals [42]. In our study, we obtained consistent results that
C20:1n-9c was significantly higher in MetS patients than healthy
controls and it was closely associated with the clinical parameters.
Adrenic acid (AdA, C22:4n-6c), an abundant fatty acid in the
vasculature, is produced by a two-carbon chain elongation of
arachidonic acid (AA, C20:4n-6c) and can also be converted to AA
via β-oxidation [43]. Like AA, AdA can be converted into multiple
oxygenated metabolites with important roles in various physiological
and pathophysiological processes [44]. As the most relevant fatty
acids with clinical parameters, C22:4n-6c might be of great impor-
tance for the physiological and pathophysiological processes of MetS.

4. Conclusions

In this study, a powerful strategy of metabolic profiling by GC–
SIM–MS combined with RF and CCA was developed to explore the
perturbations of serum free fatty acids and possible biomarkers of

MetS. The results indicated that RF models revealed characteristic
and powerful advantages on the discrimination between MetS
patients and healthy controls, thus the classification and predic-
tion model for MetS by RF could be used to assist the diagnosis of
MetS. Moreover, CCA showed satisfactory correlation between FFA
and clinical parameters. As a result, several FFAs, including
C16:1n-9c, C20:1n-9c and C22:4n-6c, were screened as the poten-
tial biomarkers associated with clinical parameters for MetS. The
results of CCA also indicated that HDL-C, TG and FBG were the
most important parameters closely correlated with FFAs distur-
bances of MetS, thus they should be paid more attention to in
clinical practice for monitoring FFAs disturbances of MetS than WC
and SBP/DBP. The results have demonstrated that the proposed
approach may be effective for exploring metabolic perturbations
and possible biomarkers for diseases, and may be able to provide
useful information for clinical practice.
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Fig. 3. MDS plot of serum free fatty acid profiles from HC, MetS and QC groups.
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and clinical parameters (V1).

Fig. 5. Plot of the absolute values of coefficients of the first couple of canonical
variables for clinical parameters.

Fig. 6. Plot of the absolute values of coefficients of the first couple of canonical
variables for free fatty acids.
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